

COURSE SPECIFICATION

(LOGIC DESIGN-2)

Programme (s) on which the course is given
Major or Minor element of programs
Department offering the program
Department offering the course
Academic year / Level

CS, IT, IS and OR Major Computer Science Computer Science 2nd Year / 1st Semester

A-Basic Information

Title	Logic Design-2		Code	CS222		
Credit	Lecture	3	Tutorial	1	Practical	2
Hours	Total			6		

B- Professional Information

1- Overall aims of course

- Understand the principles and operations of sequential circuits, starting from Flip flops till complete sequential circuits.
- Understand the principles and operations of sequential circuits, starting from Flip flops till complete sequential circuits.
- Understand the principles and operations of sequential circuits, starting from Flip flops till complete sequential circuits.

2- Intended learning outcomes of course (ILOs)

2a- Knowledge and understanding

a5 Recognize and appreciate the professional and ethical responsibilities of the practicing computer professional including understanding the need for quality.

2b- Intellectual skills

b1 Solve a wide range of problems related to the analysis, design and construction of computer systems

b2 Analyze the requirements of a range of computer-based systems and examine the design alternatives based on the constraints imposed by society, organizations, and technology.

2c- Professional and practical skills

- c6 Use appropriate computer-based design support tools
- **c8** Appreciate the features of complex computing hardware and software and operate them effectively
- 2d- General and transferable skills
- **d4** Strike the balance between self-reliance and seeking help when necessary in new situations.
- d7 Demonstrate significantly enhanced group working abilities.

3- Contents

Торіс	No of hours	Lecture	Tutorial /Practical
 Introduction Combinational and Sequential Circuits. Synchronous and asynchronous Sequential Circuits. State Diagram and State Variables. 	3	3	-
 2 Flip Flops Introduction The Bistable Element The SR Flip-Flop The Clocked SR Latch The D-Type Latch The JK Flip-Flop Triggering the Flip-flops 	15	9	6
 3 Counters Introduction Asynchronous Ripple Counters Arbitrary Count Asynchronous Counters Synchronous Counters Arbitrary Count Synchronous Counters IC Synchronous Counters Up/Down Synchronous Counters Cascaded Counters Counter Decoding Counter Applications 	12	6	6
 4 Registers Introduction Shift Register Bidirectional Shift Registers The Universal Shifts Counters The use of Shift Registers as Counters Sequence Generators The Ring Counter The Johnson Counter MLS Shift Registers 	15	9	6

 5 Synchronous Sequential Circuits Introduction Analysis Procedure Design Examples Design Procedure 	15	9	6
 6 Sequential Logic Programming Introduction The FPGA and sequential programming Implementing counters and registers Using the VHDL language to implement a general sequential circuit. 		_	18
 7 The Main Memory Introduction Read Only Memory Programmable ROMs ROM Applications Read Write Memories Dynamic RAMs Memory Expansion 	6	6	-
Total sum	84	42	42

4- Teaching and learning methods

- 4.1 Lectures.
- 4.2 Practical experiments in the laboratory.
- 4.3 Exercises and tutorials.
- 4.4 Research assignments.

5- Student assessment methods

5-a Methods

- 5.a.1 Reports, assignments, and exercises to assess knowledge and understanding.
- 5.a.2 Regular oral, practical and written quizzes to assess intellectual skills.
- 5.a.3 Practical projects, final practical and oral exams to assess professional skills.
- 5.a.4 Reports, assignments, and discussions to assess general and transferable skills.
- 5.a.5 Final written exam to assess knowledge and understanding.

5-b Assessment schedule

Assessment 1	5 th week.	
Assessment 2	8 th week.	Mid term exam
Assessment 3	10 th week.	
Assessment 4	16 th week (Oral and	d practical)
Assessment 5	17 th -18 th weeks (fi	nal written exam)

5-c Weighting of assessments

Semester work	10%
Mid-term examination	10%
Oral / Practical examination.	20%
Final-term examination	60%
Total	100%

6- List of references

6-a Course notes

There are lectures notes prepared in the form of a book authorized by the department

6-b Essential books (text books)

[1] R. Tocci, Digital Systems Principles and Applications, six editions, 1991, Prentice-Hall, Inc.

6-c Recommended books

- [1] B. Holdsworth, Digital Logic Design, Third edition, 1993, Butterworth-Heinemann Ltd.
- [2] R. Tocci, Digital Circuits, Prentice-Hall Inc., 2001.
- [3] A book prepared and edited by the lecturer, and approved by the department council.

6-d Periodicals, Web sites, ... etc

IEEE transactions on computers and software.

7- Facilities required for teaching and learning

- Digital Design and logic programming laboratories.
- Laboratory equipments, apparatus and kits.
- Datashow, screen, and laptop computer.

Course coordinator:

Prof. Fawzy Ali Torkey

Head of Department:

Prof. Nabil Abd-El-Wahid Ismail

Date: / /